mysql在线运行

发布时间: 2023-11-21 11:00 阅读: 文章来源:1MUMB698PS
1. 说在前面的话2. 安装employees测试库3. 观测SQL运行状态3.1 观测SQL运行时的内存消耗3.2 观测SQL运行时的其他开销3.3 观测SQL运行进度

感知SQL运行时的状态

1. 说在前面的话

在MySQL里,一条SQL运行时产生多少磁盘I/O,占用多少内存,是否有创建临时表,这些指标如果都能观测到,有助于更快发现SQL瓶颈,扑灭潜在隐患。

从MySQL 5.7版本开始,performance_schema就默认启用了,并且还增加了sys schema,到了8.0版本又进一步得到增强提升,在SQL运行时就能观察到很多有用的信息,实现一定程度的可观测性。

下面举例说明如何进行观测,以及主要观测哪些指标。

2. 安装employees测试库

安装MySQL官方提供的employees测试数据库,戳此链接(https://dev.mysql.com/doc/index-other.html)下载,解压缩后开始安装:

$ mysql -f < employees.sql;INFOCREATING DATABASE STRUCTUREINFOstorage engine: InnoDBINFOLOADING departmentsINFOLOADING employeesINFOLOADING dept_empINFOLOADING dept_managerINFOLOADING titlesINFOLOADING salariesdata_load_time_diff00:00:37

MySQL还提供了相应的使用文档:https://dev.mysql.com/doc/employee/en/。

本次测试采用GreatSQL 8.0.32-24版本,且运行在MGR环境中:

greatsql> \s...Server version: 8.0.32-24 GreatSQL, Release 24, Revision 3714067bc8c...greatsql> select MEMBER_ID, MEMBER_ROLE, MEMBER_VERSION from performance_schema.replication_group_members;+--------------------------------------+-------------+----------------+| MEMBER_ID| MEMBER_ROLE | MEMBER_VERSION |+--------------------------------------+-------------+----------------+| 2adec6d2-febb-11ed-baca-d08e7908bcb1 | SECONDARY| 8.0.32 || 2f68fee2-febb-11ed-b51e-d08e7908bcb1 | ARBITRATOR| 8.0.32 || 5e34a5e2-feb6-11ed-b288-d08e7908bcb1 | PRIMARY | 8.0.32 |+--------------------------------------+-------------+----------------+3. 观测SQL运行状态

查看当前连接/会话的连接ID、内部线程ID:

greatsql> select processlist_id, thread_id from performance_schema.threads where processlist_id = connection_id();+----------------+-----------+| processlist_id | thread_id |+----------------+-----------+|110 |207 |+----------------+-----------+

查询得到当前的连接ID=110,内部线程ID=207。

P.S,由于本文整理过程不是连续的,所以下面看到的 thread_id 值可能会有好几个,每次都不同。

3.1 观测SQL运行时的内存消耗

执行下面的SQL,查询所有员工的薪资总额,按员工号分组,并按薪资总额倒序,取前10条记录:

greatsql> explain select emp_no, sum(salary) as total_salary from salaries group by emp_no order by total_salary desc limit 10\G*************************** 1. row ***************************id: 1select_type: SIMPLEtable: salariespartitions: NULL type: indexpossible_keys: PRIMARYkey: PRIMARYkey_len: 7ref: NULL rows: 2838426 filtered: 100.00Extra: Using temporary; Using filesort

看到需要全索引扫描(其实也等同于全表扫描,因为是基于PRIMARY索引),并且还需要生成临时表,以及额外的filesort。

在正式运行该SQL之前,在另外的窗口中新建一个连接会话,执行下面的SQL先观察该连接/会话当前的内存分配情况:

greatsql> select * from sys.x$memory_by_thread_by_current_bytes where thread_id = 207\G*************************** 1. row *************************** thread_id: 207user: root@localhostcurrent_count_used: 9 current_allocated: 26266 current_avg_alloc: 2918.4444 current_max_alloc: 16464total_allocated: 30311

等到该SQL执行完了,再一次查询内存分配情况:

greatsql> select * from sys.x$memory_by_thread_by_current_bytes where thread_id = 207\G*************************** 1. row *************************** thread_id: 207user: root@localhostcurrent_count_used: 13 current_allocated: 24430 current_avg_alloc: 1879.2308 current_max_alloc: 16456total_allocated: 95719

我们注意到几个数据的变化情况,用下面表格来展示:

指标运行前运行后total_allocated3031195719

也就是说,SQL运行时,需要分配的内存是:95719 - 30311 = 65408 字节。

3.2 观测SQL运行时的其他开销

通过观察 performance_schema.status_by_thread 表,可以知道相应连接/会话中SQL运行的一些状态指标。在SQL运行结束后,执行下面的SQL命令即可查看:

greatsql> select * from performance_schema.status_by_thread where thread_id = 207;...|207 | Created_tmp_disk_tables | 0||207 | Created_tmp_tables| 0|...|207 | Handler_read_first| 1||207 | Handler_read_key| 1||207 | Handler_read_last| 0||207 | Handler_read_next| 2844047||207 | Handler_read_prev| 0||207 | Handler_read_rnd| 0||207 | Handler_read_rnd_next| 0||207 | Handler_rollback| 0||207 | Handler_savepoint| 0||207 | Handler_savepoint_rollback| 0||207 | Handler_update| 0||207 | Handler_write| 0||207 | Last_query_cost | 286802.914893||207 | Last_query_partial_plans| 1|...|207 | Select_full_join| 0||207 | Select_full_range_join| 0||207 | Select_range| 0||207 | Select_range_check| 0||207 | Select_scan | 1||207 | Slow_launch_threads | 0||207 | Slow_queries| 1||207 | Sort_merge_passes| 0||207 | Sort_range| 0||207 | Sort_rows| 1||207 | Sort_scan| 1|...

上面我们只罗列了部分比较重要的状态指标。从这个结果也可以佐证slow query log中的结果,确实没创建临时表。

作为参照,查看这条SQL对应的slow query log记录:

# Query_time: 0.585593Lock_time: 0.000002 Rows_sent: 10Rows_examined: 2844057 Thread_id: 110 Errno: 0 Killed: 0 Bytes_received: 115 Bytes_sent: 313 Read_first: 1 Read_last: 0 Read_key: 1 Read_next: 2844047 Read_prev: 0 Read_rnd: 0 Read_rnd_next: 0 Sort_merge_passes: 0 Sort_range_count: 0 Sort_rows: 10 Sort_scan_count: 1 Created_tmp_disk_tables: 0 Created_tmp_tables: 0 Start: 2023-07-06T10:06:01.438376+08:00 End: 2023-07-06T10:06:02.023969+08:00 Schema: employees Rows_affected: 0# Tmp_tables: 0Tmp_disk_tables: 0Tmp_table_sizes: 0# InnoDB_trx_id: 0# Full_scan: YesFull_join: NoTmp_table: NoTmp_table_on_disk: No# Filesort: YesFilesort_on_disk: NoMerge_passes: 0#InnoDB_IO_r_ops: 0InnoDB_IO_r_bytes: 0InnoDB_IO_r_wait: 0.000000#InnoDB_rec_lock_wait: 0.000000InnoDB_queue_wait: 0.000000#InnoDB_pages_distinct: 4281use employees;SET timestamp=1688609161;select emp_no, sum(salary) as total_salary from salaries group by emp_no order by total_salary desc limit 10;

可以看到,Created_tmp_disk_tables, Created_tmp_tables, Handler_read_next, Select_full_join, Select_scan, Sort_rows, Sort_scan, 等几个指标的数值是一样的。

还可以查看该SQL运行时的I/O latency情况,SQL运行前后两次查询对比:

greatsql> select * from sys.io_by_thread_by_latency where thread_id = 207;+----------------+-------+---------------+-------------+-------------+-------------+-----------+----------------+| user| total | total_latency | min_latency | avg_latency | max_latency | thread_id | processlist_id |+----------------+-------+---------------+-------------+-------------+-------------+-----------+----------------+| root@localhost | 7 | 75.39 us| 5.84 us | 10.77 us| 22.12 us|207 |110 |+----------------+-------+---------------+-------------+-------------+-------------+-----------+----------------+...greatsql> select * from sys.io_by_thread_by_latency where thread_id = 207;+----------------+-------+---------------+-------------+-------------+-------------+-----------+----------------+| user| total | total_latency | min_latency | avg_latency | max_latency | thread_id | processlist_id |+----------------+-------+---------------+-------------+-------------+-------------+-----------+----------------+| root@localhost | 8 | 85.29 us| 5.84 us | 10.66 us| 22.12 us|207 |110 |+----------------+-------+---------------+-------------+-------------+-------------+-----------+----------------+

可以看到这个SQL运行时的I/O latency是:85.29 - 75.39 = 9.9us。

3.3 观测SQL运行进度

我们知道,运行完一条SQL后,可以利用PROFLING功能查看它各个阶段的耗时,但是在运行时如果也想查看各阶段耗时该怎么办呢?

从MySQL 5.7版本开始,可以通过 performance_schema.events_stages_% 相关表查看SQL运行过程以及各阶段耗时,需要先修改相关设置:

# 确认是否对所有主机&用户都启用greatsql> select * FROM performance_schema.setup_actors;+------+------+------+---------+---------+| HOST | USER | ROLE | ENABLED | HISTORY |+------+------+------+---------+---------+| %| %| %| NO| NO|+------+------+------+---------+---------+# 修改成对所有主机&用户都启用greatsql> update performance_schema.setup_actors SET ENABLED = ‘YES‘, HISTORY = ‘YES‘ WHERE HOST = ‘%‘ AND USER = ‘%‘; # 修改 setup_instruments & setup_consumers 设置greatsql> update performance_schema.setup_consumers SET ENABLED = ‘YES‘ WHERE NAME LIKE ‘%events_statements_%‘; greatsql> update performance_schema.setup_consumers SET ENABLED = ‘YES‘ WHERE NAME LIKE ‘%events_stages_%‘;

这就实时可以观测SQL运行过程中的状态了。

在SQL运行过程中,从另外的窗口查看该SQL对应的 EVENT_ID

greatsql> select EVENT_ID, truncate(TIMER_WAIT/1000000000000,6) as Duration, SQL_TEXTFROM performance_schema.events_statements_history WHERE thread_id = 85 order by event_id desc limit 5;+----------+----------+-------------------------------------------------------------------------------------------------------------------------------+| EVENT_ID | Duration | SQL_TEXT|+----------+----------+-------------------------------------------------------------------------------------------------------------------------------+|149845 |0.6420 | select emp_no, sum(salary) as total_salary, sleep(0.000001) from salaries group by emp_no order by total_salary desc limit 10 ||149803 |0.6316 | select emp_no, sum(salary) as total_salary, sleep(0.000001) from salaries group by emp_no order by total_salary desc limit 10 ||149782 |0.6245 | select emp_no, sum(salary) as total_salary, sleep(0.000001) from salaries group by emp_no order by total_salary desc limit 10 ||149761 |0.6361 | select emp_no, sum(salary) as total_salary, sleep(0.000001) from salaries group by emp_no order by total_salary desc limit 10 ||149740 |0.6245 | select emp_no, sum(salary) as total_salary, sleep(0.000001) from salaries group by emp_no order by total_salary desc limit 10 |+----------+----------+-------------------------------------------------------------------------------------------------------------------------------+# 再根据 EVENT_ID 值去查询 events_stages_history_longgreatsql> select thread_id ,event_Id, event_name AS Stage, truncate(TIMER_WAIT/1000000000000,6) AS DurationFROM performance_schema.events_stages_history_long WHERE NESTING_EVENT_ID = 149845 order by event_id;+-----------+----------+------------------------------------------------+----------+| thread_id | event_Id | Stage| Duration |+-----------+----------+------------------------------------------------+----------+|85 |149846 | stage/sql/starting |0.0000 ||85 |149847 | stage/sql/Executing hook on transaction begin. |0.0000 ||85 |149848 | stage/sql/starting |0.0000 ||85 |149849 | stage/sql/checking permissions |0.0000 ||85 |149850 | stage/sql/Opening tables|0.0000 ||85 |149851 | stage/sql/init |0.0000 ||85 |149852 | stage/sql/System lock|0.0000 ||85 |149854 | stage/sql/optimizing|0.0000 ||85 |149855 | stage/sql/statistics|0.0000 ||85 |149856 | stage/sql/preparing|0.0000 ||85 |149857 | stage/sql/Creating tmp table|0.0000 ||85 |149858 | stage/sql/executing|0.6257 ||85 |149859 | stage/sql/end|0.0000 ||85 |149860 | stage/sql/query end|0.0000 ||85 |149861 | stage/sql/waiting for handler commit|0.0000 ||85 |149862 | stage/sql/closing tables|0.0000 ||85 |149863 | stage/sql/freeing items|0.0000 ||85 |149864 | stage/sql/logging slow query|0.0000 ||85 |149865 | stage/sql/cleaning up|0.0000 |+-----------+----------+------------------------------------------------+----------+

上面就是这条SQL的运行进度展示,以及各个阶段的耗时,和PROFILING的输出一样,当我们了解一条SQL运行所需要经历的各个阶段时,从上面的输出结果中也就能估算出该SQL大概还要多久能跑完,决定是否要提前kill它。

如果想要观察DDL SQL的运行进度,可以参考这篇文章:不用MariaDB/Percona也能查看DDL的进度。

更多的观测指标、维度还有待继续挖掘,以后有机会再写。

另外,也可以利用MySQL Workbench工具,或MySQL Enterprise Monitor,都已集成了很多可观测性指标,相当不错的体验。

•••展开全文